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The Siegel action describing the chiral bosons in one-space one-time dimension is con-
sidered on the light-front. The front-form theory is seen to possess a set of three first-class
constraints and consequently a local vector gauge symmetry. The front-form Hamilto-
nian, path integral and BRST formulations of this front-form theory are investigated
under some specific gauge choices.
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1. INTRODUCTION

The self-dual fields in one-space one-time dimensions called chiral bosons
are of wide interest (Belluchiet al., 1989; Bernstein and Sonnenschein, 1988;
Floreanini and Jackiw, 1987; Grosset al., 1985; Hanneaux and Teitelboim, 1989;
Imbimbo and Schwimmer, 1987; Kulshreshthaet al., 1993 Kulshershrtha and
Mueller-Kirsten, 1992; Labastida and Pernici, 1987, 1988; Marcus and Schwarz,
1982; McCabe, 1989, 1990; McCabe and Mehamid, 1990; Mezinescu and
Nepomechie, 1988; Siegel, 1984; Srivastava, 1989; Sonnenschein, 1988; Mstone,
1989, 1990, 1991; Wen, 1990). They are basic ingredients of some string theories
(Grosset al., 1985; Marcus and Schwarz, 1982) and are also important in the studies
of quantum Hall effect (Stone, 1989, 1990, 1991; Wen, 1990a,b;). These fields de-
scribing chiral bosons satisfy the self-duality conditions∂−φ ≡ (∂0φ − ∂1φ) = 0.
A classical covariant model describing a chiral scalar has seen proposed by Siegel
(1984). Modifications of the Siegel action achieved by the addition of some ap-
propriate Wess–Zumino terms to the action have been considered in the literature
(Imbimbo and Schwimmer, 1987; Labastida and Pernici, 1987, 1988). The Becchi–
Rouet–Stora and Tyutin (BRST) quantization (Becchiet al., 1974; Kulshreshtha,
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1998, 2001; Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993b,c,d,
1995; Nemeschanskyet al., 1988; Tyutin, 1975) of the Siegel action modified by
the inclusion of an extra Liouville term to the original action has been investi-
gated (Labastida and Pernici, 1987, 1988). The Hamiltonian formulation (Dirac,
1950, 1964) of the Siegel action without any modifications has been studied in
Kulshreshthaet al. (1993a) under various gauge-fixing conditions in the instant-
form (IF), and its IF-BRST formulation has been studied in Kulshreshthaet al.,
(1999). In the present work, we propose to investigate the canonical structure, con-
strained dynamics, and Hamiltonian (Labastida and Pernici, 1987, 1988), path in-
tegral, and BRST (Becchiet al., 1974; Kulshreshtha, 1998, 2001; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshthaet al., 1993a,b,c,d, 1994a,b, 1995 Nemeschan-
sky et al., 1988; Tyutin, 1975) formulations of this model on the light-front (LF),
i.e., on the hyperplanes: light-cone (LC) timex+ ≡ t = x+ = (x0+ x1)/

√
2=

constant (Dirac, 1949; Brodskyet al., 1998). The Hamiltonian and BRST formu-
lations of this model in the usual IF of dynamics (on the hyperplanesx0 = constant)
(Dirac, 1949; for a recent review see e.g Brodskyet al., 1998) has been investigated
in (Kulshreshthaet al., 1999).

The IF theory is well known to be a gauge-invariant (GI) theory possessing a
set of two first-class constraints (Kulshreshthaet al., 1993a). The front-form (FF)
theory under the present investigation is seen to possess a set of three first-class
constraints, and consequently it also describes a GI theory. The FF Hamiltonian
and path integral formulation of this model has been investigated in the present
work under some specific gauges.

Also, because the LF coordinates are not related to the conventional IF coor-
dinates by a finite Lorentz transformation, the descriptions of the same physical
result may be different in the IF and the FF. In fact, the quantization of relativis-
tic field theories at fixed LC time proposed by Dirac (1949; for a recent review
see e.g. Brodskyet al., 1998) has very important applications and the LF vari-
ables are very useful not only in field theories but also in the description of string
theories and D-brane physics. In the LC quantization (LCQ) of gauge theories
the transverse degrees of freedom of the gauge field can be immediately iden-
tified as the dynamical degrees of freedom; as a result, the LCQ remains very
economical in displaying the relevant degrees of freedom leading directly to the
physical Hilbert space. In the context of LCQ of two-dimensional field theo-
ries, it is very often found that a theory that is gauge anomalous in the IF is no
longer gauge anomalous (and therefore gauge-invariant) in the FF/LCQ. Also, in
the LCQ, there is usually no conflict with the microcausality, which is in con-
trast with the usual IF quantization. Also, the FF has seven kinematical Poincare
generators including the Lorentz boost transformations compared to only six in
the usual IF framework. The advantages of the FF/LCQ over that of the con-
ventional IF quantization are best illustrated in a recent review (Brodskyet al.,
1998).
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However, in the usual Hamiltonian formulation of a GI theory under some
gauge-fixing conditions, one necessarily destroys the gauge invariance of the the-
ory by fixing the gauge (which converts a set of first-class constraints into a set of
second-class constraints, implying a breaking of gauge invariance under gauge-
fixing). To achieve the quantization of a GI theory such that the gauge invariance
of the theory is maintained even under gauge-fixing, one goes to a more gen-
eralized procedure called the BRST formulation. In the BRST formulation of a
GI theory, the theory is rewritten as a quantum system that possesses a gener-
alized gauge invariance called the BRST symmetry. For this, one enlarges the
Hilbert space of the GI theory and replaces the notion of the gauge transforma-
tion, which shifts operators byc-number functions, by a BRST transformation,
which mixes the operators having different statistics. In view of this, one intro-
duces new anticommuting variablesc andc̄ called the Faddeev–Popov ghost and
antighost fields, which are Grassmann numbers on the classical level and opera-
tors in the quantized theory, and a commuting variableb called the Nakanishi–
Lautrup field (Dirac, 1950, 1964; Kulshreshtha, 1998, 2001; Kulshreshthaet al.,
1993b,c,d, 1994a,b, 1995; Kulshreshtha and Kulshreshtha, 1998 Nemeschansky
et al., 1988).

In the BRST formulation of a theory one thus embeds a GI theory into a BRST-
invariant system, and the quantum Hamiltonian of the system (which includes the
gauge-fixing contribution) commutes with the BRST charge operatorQ as well
as with the anti-BRST charge operatorQ̄. The new symmetry of the system (the
BRST symmetry) that replaces the gauge invariance is maintained (even under
gauge-fixing) and hence projecting any state onto the sector of BRST and anti-
BRST invariant states yields a theory that is isomorphic to the original GI theory.
The unitarity and consistency of the BRST-invariant theory described by the gauge-
fixed quantum Lagrangian is guaranteed by the conservation and nilpotency of the
BRST chargeQ.

In the next section, we briefly consider the basics of the Siegel action in the
IF of dynamics (Kulshreshthaet al., 1993a, 1999). In Section 3, we study the
Hamiltonian and path integral formulations of this model on the LF under gauge-
fixing and in Section 4, its BRST formulation under some specific LC gauges. The
summary and discussions are finally given in Section 5.

2. THE INSTANT-FORM (IF) THEORY

The Siegel action describing the chiral borons in one-space one-time dimen-
sion in the usual IF (i.e., on the hyperplanesx0 = constant) is defined by the action
(Siegel, 1984)

S =
∫

L dx dt (2.1a)
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L =
[

1

2
(∂0φ)2− 1

2
(∂1φ)2+ λ(∂0φ − ∂1φ)

]
(2.1b)

gµν := diag(+1,−1) (2.1c)

The overdots and primes here denote the time and space derivatives respectively.
In the above equation, the first term corresponds to a massless boson (which is
equivalent to a massless fermion), and the second term is the usual term involving
the chiral-constraint∂−φ ≡ (∂ − 0φ − ∂1φ) ≈ 0) and the auxiliary fieldλ. This
model is seen to possess one primary constraint

ρ1 = pλ ≈ 0 (2.2)

and one secondary constraint

ρ2 = [π − ∂1φ]/(1+ 2λ)2 ≈ 0 (2.3)

which is classically equivalent to (Kulshreshthaet al., 1993, 1999)

ρ2 = [π − ∂1φ] ≈ 0 (2.4)

Hereπ and pλ are the momenta canonically conjugate respectively toφ andλ.
This theory is seen to possess the well-known Siegel gauge symmetry and its
Hamiltonian and BRST formulations have been studied in Kulshreshthaet al.,
(1993, 1999) under some specific gauge choices.

3. THE LIGHT-FRONT THEORY

In order to study the theory on the LF (i.e., on the hyperplanesx+ = (x0+
x1)/
√

2= constant) one defines the LC coordinatesx± := [(x0± x1)/
√

2] and
then writes all the quantities involved in the action in terms ofx± instead ofx0

andx1 (Dirac, 1949; for a recent review see e.g. Brodskyet al., 1998). The action
of the theory on the LF thus reads

S=
∫

L dx+ dx− (3.1a)

L = [(∂+φ)(φ−φ + 2λ(∂−φ)(∂−φ)] (3.1b)

∂±φ = (∂0φ ± ∂1φ)/
√

2 (3.1c)

As before, in (3.1b), the first term corresponds to a massless boson (which is
equivalent to a massless fermion), and the second term is the usual term involving
the chiral constraint [∂−φ ≈ 0] and the auxiliary fieldλ. The Euler–Lagrange
equations obtained fromL (3.1) are

[∂+∂−φ + 2λ∂−∂−φ] = 0 (3.2a)

[2(∂−φ)(∂−φ)] = 0 (3.2b)
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3.1. The Hamiltonian and Path Integral Formulations

The LC canonical momenta obtained fromL (3.1) are

π := ∂L

∂(∂+φ)
= [∂−φ] (3.3a)

pλ := ∂L

∂(∂+λ)
= 0 (3.3b)

Here,π and pλ are the momenta canonically conjugate respectively toφ andλ.
Also the above equations imply that the theory possesses two primary constraints:

χ1 = pλ ≈ 0 (3.4a)

χ2 = [π − ∂−φ] ≈ 0 (3.4b)

The canonical Hamiltonian density corresponding toL is

H C = [π (∂+φ)+ pλ(∂+λ)− L ] = [−2λ(∂−φ)(∂−φ)] (3.5)

After including the primary constraintsχ1 andχ2 in the canonical Hamiltonian
densityHC with the help of Lagrange multipliersu andv, one can write the total
Hamiltonian densityHT as:

H T = [−2λ(∂−φ)(∂−φ)+ pλu+ (π − ∂−φ)v] (3.6)

The Hamiltons equations obtained from the total Hamiltonian HT =
∫

H T dx−

are

∂+φ = ∂HT

∂π
= v (3.7a)

−∂+π = ∂HT

∂φ
= [4λ∂−∂−φ + ∂−v] (3.7b)

∂+λ = ∂HT

∂pλ
= u (3.7c)

−∂+pλ = ∂HT

∂λ
= [−2(∂−φ)(∂−φ)] (3.7d)

∂+u = ∂HT

∂5u
= 0 (3.7e)

−∂+5u = ∂HT

∂u
= pλ (3.7f)

∂+v = ∂HT

∂πv
= 0 (3.7g)

−∂+5v = ∂HT

∂v
= [π − ∂−φ] (3.7h)
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These are the equations of motion that preserve the constraints of the theoryχ1

andχ2 in the course of time. For the equal LC time (x+ = y+) Poisson bracket
{ , }p of two functionsA andB, we choose the convention

{A(x), B(y)}p :=
∫

dz−
∑
α

[
∂A(x)

∂qα(z)

∂B(y)

∂pα(z)
− ∂A(x)

∂pα(z)

∂B(y)

∂qα(z)

]
(3.8)

demanding that primary constraintχ1 be preserved in the course of time. We obtain
the secondary constraint as

χ3 :={χ1, H T}p = [2(∂−φ)(∂−φ)] ≈ 0

which is classically equivalent to

χ3 = [
√

2(∂−φ)] ≈ 0 (3.9)

Now onwards we will considerχ3 as the secondary Gauss law constraint of our
theory (instead of ˜χ3). Now the preservation ofχ2 andχ3 for all time does not
give rise to any further constraints. The theory is thus seen to possess a set of three
constraintsχi (i = 1, 2, 3):

χ1 = pλ ≈ 0 (3.10a)

χ2 = [π − ∂−φ] ≈ 0 (3.10b)

χ3 = [
√

2(∂−φ)] ≈ 0 (3.10c)

The matrix of the Poisson brackets of the constraintsχi , namely,Sαβ(w−, z−) :=
{χα(w−), χβ(z−)}p, is then calculated. The nonvanishing matrix elements of the
matrix Sαβ(w−, z−) (with the arguments of the field variables being suppressed)
are

S22 = [−2∂−δ(w− − z−)] (3.11a)

S23 = S32 = [
√

2∂−δ(w− − z−)] (3.11b)

The inverse of the matrixSαβ does not exist and therefore the matrix is singular,
implying that the set of constraintsχi is first class and that the theory is a GI
theory (Belluchiet al., 1989; Floreanini and Jackiw, 1987; Sonnenschein, 1988).
In fact, the action of theory is seen to be invariant under the local vector gauge
transformation (LVGT):

δφ =
√

2β(∂−φ), δpλ = 0, δ5u = 0, δ5v = 0 (3.12a)

δλ = [−(∂+β)+ 2β(∂−λ)− λ(∂−β)]/
√

2 (3.12b)

δπ =
√

2[β(∂−∂−φ)+ (∂−β)(∂−φ)] (3.12c)

δu = [−(∂+∂+β)+ 2β(∂+∂−λ)+ 2(∂+β)(∂−λ)− λ(∂+∂−β)
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− (∂+λ)(∂−β)]/
√

2 (3.12d)

δv =
√

2[β(∂+∂−φ)+ (∂+β)(∂−φ)] (3.12e)

whereβ ≡ β(x−, x+) is an arbitrary function of its arguments.
The generator of the above LVGT is the charge operator of the theory:

J+ =
∫

j+ dx− =
∫

dx−
√

2[β(∂−φ)(∂−φ)] (3.13)

The current operator of the theory is

J− =
∫

j− dx− =
∫

dx−
√

2[β(∂−φ)∂+φ + 4λ∂−φ] (3.14)

The divergence of the vector-current density, namely,∂µ j µ(= ∂+ j+ + ∂− j−), is
therefore seen to vanish. This implies that the theory possesses at the classical level,
a local vector gauge symmetry. We now proceed to quantize the theory under the
gauge

G = λ = 0 (3.15)

Under this gauge, the total set of constraints of the theory becomes

ψ1 = χ1 = pλ ≈ 0 (3.16a)

ψ2 = χ2 = [π − ∂−φ] ≈ 0 (3.16b)

ψ3 = χ3 = [
√

2(∂−φ)] ≈ 0 (3.16c)

ψ4 = G = λ = 0 (3.16d)

The matrix of the Poisson brackets of the constraintsψ1, namely,Tαβ(w, z) :=
{ψα(w), ψβ(z)}p, is then calculated. The nonvanishing matrix elements of the ma-
trix Tαβ(w, z) (with the arguments of the field variables being suppressed again)
are

T14 = −T41 = −δ(w− − z−) (3.17a)

T22 = −2∂−δ(w− − z−) (3.17b)

T23 = T32 =
√

2∂−δ(w− − z−) (3.17c)

The inverse of the matrixTαβ exists and the matrix is nonsingular. The nonvanishing
elements of the inverse of the matrixTαβ (i.e. the elements of the matrix (T−1)αβ
(with the arguments of the field variables being suppressed once again) are

(T−1)14 = −(T−1)41 = δ(w− − z−) (3.18a)

(T−1)23 = +(T−1)32 = ∈(w− − z−)/(2
√

2) (3.18b)

(T−1)33 = ∈(w− − z−)/2 (3.18c)
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with ∫
dz− T(x−, z−)T−1(z−, y−) = 14×4δ(x

− − y−) (3.19)

with,

[‖det(Tαβ)‖]1/2 = [
√

2∂−δ(w− − z−)] (3.20)

Now following the Dirac quantization procedure in the Hamiltonian formula-
tion, one finds that there do not exist any nonvanishing equal LC time commutators
for this theory under the gaugeλ = 0. The same is seen to hold true for the quanti-
zation of the theory under some other gauge-fixing conditions such as (λ− φ) = 0,
(λ− π ) = 0, and (λ− φ − π ) = 0. This is an interesting result to be noted here
and its consequences need to be studied further involving the methods of constraint
quantization. The path integral quantization of this theory is, however, possible as
usual under all the above gauge-fixing conditions. In the following, we illustrate
the path integral quantization of this theory under the gaugeλ = 0, as an example.

Also, for later use (in the next section), for considering the BRST formulation
of our GI theory, we convert the total Hamiltonian densityHT into the first-order
Lagrangian density

L = [π (∂+φ)+ pλ(∂+λ)+5u(∂+u)+5v(∂+v)−H T] (3.21a)

= [2λ(∂−φ)(∂−φ)+ (∂−φ)(∂+φ)+5u(∂+u)+5v(∂+v)] (3.21b)

In the above equation the termspλ(∂+λ)− u andπ (∂+φ − v) drop out in view of
the Hamiltons equations of the theory.

The transition to quantum theory in the path integral formulation is made by
writing the vacuum-to-vacuum transition amplitude called the generating func-
tional Z[ Ji ] in the presence of external source currentsJi under the gaugeζ =
λ ≈ 0 as (see e.g., Gitman and Tyutin, 1990, Henneaux and Teitelboim, 1992)

Z[ Ji ] =
∫

[dµ] exp

[
i
∫

dx+ dx−
]

[ Jiφ
i + 2λ(∂−φ)(∂−φ)+ (∂−φ)(∂+φ)

+5u(∂+u)+5v(∂+v)] (3.22a)

whereφi are the phase space variables

φi ≡ (φ, λ, u, v) (3.22b)

and the functional measure [dµ] for the above generating functional is

[dµ] = [
√

2∂−δ(w− − z−)][dφ][dπ ][dλ][dpλ][du]

[d5u][dv][d5v]δ[( pλ) ≈ 0]δ[(π − ∂−φ) ≈ 0]

δ[
√

2(∂−φ) ≈ 0]δ[(λ) ≈ 0] (3.22c)
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4. THE BRST FORMULATION

We now rewrite our GNLSM, which is GI as a quantum system that possesses
the generalized gauge-invariance called BRST symmetry. For this, we first enlarge
the Hilbert space of our GI GNLSM and replace the notion of gauge transformation,
which shifts operators byc-number functions, by a BRST transformation, which
mixes operators with Bose and Fermi statistics. We then introduce new anticom-
muting variablesc andc̄ (Grassmann numbers on the classical level, operators in
the quantized theory) and a commuting variableb (called the Nakamishi–Lautrup
field) such that (Becchiet al., 1974; Kulshreshtha, 1998, 2001; Kulshreshthaet al.,
1993b,c,d, 1994a,b, 1995, 1998; Nemeschanskyet al., 1988; Tyutin, 1975; Kul-
shreshtha and Kulshreshtha, 1998)

δ̂φ =
√

2c(∂−φ), δ̂pλ = 0, δ̂5u = 0, δ̂5v = 0 (4.1a)

δ̂λ = [−(∂+c)+ 2c(∂−λ)− λ(∂−c)]/
√

2 (4.1b)

δ̂π =
√

2[c(∂−∂−φ)+ (∂−c)(∂−φ)] (4.1c)

δ̂u = [−(∂+∂+c)+ 2c(∂+∂−λ)+ 2(∂+c)(∂−λ)− λ(∂+∂−c)

− (∂+λ)(∂−c)]/
√

2 (4.1d)

δ̂v =
√

2[c(∂+∂−φ)+ (∂+c)(∂−φ)] (4.1e)

δ̂c = 0, δ̂c̄ = b, δ̂b = 0 (4.1f)

with the propertŷδ2 = 0. We now define a BRST-invariant function of the dynami-
cal variables to be a functionf (π, pλ,5u,5v, pb,5c,5c̄, π, λ, u, v, b, c, c̄) such
that δ̂ f = 0.

4.1. Gauge Fixing in the BRST Formulism

Permorming gauge-fixing in the BRST formalism implies adding to the first-
order Lagrangian densityL10, a trivial BRST-invariant function (Becchiet al.,
1974; Kulshreshtha, 1998, 2001; Kulshreshthaet al., 1993b,c,d, 1994a,b, 1995;
Nemeschanskyet al., 1988; Tyutin, 1975). We thus write

L BRST=
[
2λ(∂−φ)(∂−φ)+ (∂−φ)(∂+φ)+5u(∂+u)+5v(∂+v)

+ δ̂ c̄

(
−
√

2∂+λ+ 1

2
b

)]
(4.2)

The last term in the above equation is the extra BRST-invariant gauge-fixing
term. After one integration by parts, the above equation could now be
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written as

L BRST=
[
2λ(∂−φ)(∂−φ)+ (∂−φ)(∂+φ)+5u(∂+u)+5v(∂+v)

−
√

2b(∂+λ)+ 1

2
b2+ (∂+c̄)(∂+c̄)

]
(4.3)

Proceeding classically, the Euler–Lagrange equation forb reads

b =
√

2(∂+λ) (4.4)

The requirement̂δb = 0 then implies

δ̂b =
√

2δ̂(∂+λ) (4.5)

which in turn implies

∂+∂+c = 0 (4.6)

The above equation is also an Euler–Lagrange equation obtained by the variation of
L BRST with respect tōc. In introducing momenta one has to be careful in defining
those for the fermionic variables. We thus define the bosonic momenta in the usual
manner so that

pλ := ∂

∂(∂+λ)
L BRST= −

√
2b (4.7)

but for the fermionic momenta with directional derivatives we set

5c = L BRST

←
∂

∂(∂+c)
= (∂+c̄), 5c̄ =

→
∂

∂(∂+c̄)
L BRST= (∂+c) (4.8)

implying that the variable canonically conjugate toc is (∂+c̄) and the variable
conjugate tōc is (∂+c). For writing the Hamiltonian density from the Lagrangian
density in the usual manner we remember that the former has to be Hermitian so
that

H BRST= [π (∂+φ)+ pλ(∂+λ)+5u(∂+u)+5v(∂+v)

+5C(∂+c)+ (∂+c̄)5c̄ − L BRST] (4.9a)

=
[

pλu+ πv − (∂+φ)(∂−φ)− 2λ(∂−φ)(∂−φ)

+ 1

4
(pλ)

2+5c5c̄

]
(4.9b)
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We can check the consistency of (4.8) and (4.9) by looking at Hamilton’s equations
for the fermionic variables, i.e.,

∂+c =
→
∂

∂5c
H BRST, ∂+c̄ =H BRST

←
∂

∂5c̄
(4.10)

Thus we see that

∂+c =
E∂
∂5c

H BRST= 5c̄, ∂+c̄ =H BRST

E∂
∂5c̄
= 5c (4.11)

is in agreement with (4.8). For the operatorsc, c̄, ∂+c and ∂+c̄, one needs to
satisfy the anticommutation relations of∂+c with c̄ or of ∂+c̄ with c, but not ofc
with c̄. In general,c andc̄ are independent canonical variables and one assumes
that

{5c,5c̄} = {c̄, c} = 0, ∂+{c̄, c} = 0 (4.12a)

{∂+c̄, c} = (−1){∂+c, c} (4.12b)

where{, } means an anticommutator. We thus see that the anticommulators in
(4.12b) are nontrivial and need to be fixed. In order to fix these, we demand that
c satisfy the Heisenberg equation (Becchiet al., 1974; Kulshreshtha, 1998, 2001;
Kulshreshthaet al., 1993b,c,d, 1994a,b, 1995; Nemeschanskyet al., 1988; Tyutin,
1975):

[c, H BRST] = i ∂+c (4.13)

and using the propertyc2 = c̄2 = 0 one obtains

[c, H BRST] = (∂+c̄, c)∂+c (4.14)

Eqs. (4.12)–(4.14) then imply

{∂+c̄, c} = (−1){∂+c, c} = i (4.15)

Here the minus sign in the above equation is nontrivial and implies the existence
of states with negative norm in the space of state vectors of the theory (Becchi
et al., 1974; Kulshreshtha, 1998, 2001; Kulshreshthaet al., 1993b,c,d, 1994a,b,
1995; Nemeschanskyet al., 1988; Tyutin, 1975).

4.2. The BRST Charge Operator

The BRST charge operatorQ is the generator of the BRST transformations
(4.1). It is nilpotent and satisfiesQ2 = 0. It mixes operators that satisfy Bose
and Fermi statistics. According to its conventional definition, its commutators
with Bose operators and its anticommutators with Fermi operators for the present
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theory satisfy

[φ, Q] = ∂+c, [π, Q] = −[
√

2∂−c+ ∂−∂+c],

[λ, Q] = ∂+c (4.16a)

{c̄, Q} = [∂−φ − pλ − π ], {∂+c̄, Q} = −
√

2(∂−φ) (4.16b)

All other commutators and anticommutators involvingQ vanish. In view of (4.16),
the BRST charge operator of the present theory can be written as

Q =
∫

dx− [ic[
√

2∂−φ] − i (∂+c)[ pλ + π − ∂−φ] (4.17)

This equation implies that the set of states satisfying the conditions

pλ|ψ〉 = 0 (4.18a)

[π − ∂−φ]|ψ〉 = 0 (4.18b)

[
√

2∂−φ]|ψ〉 = 0 (4.18c)

belongs to the dynamically stable subspace of states|ψ〉 satisfyingQ|ψ〉 = 0, i.e.,
it belongs to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states
of the theory we rewrite the operatorsc andc̄ in terms of fermionic annihilation
and creation operators. For this purpose we consider (4.6). The solution of this
equation (4.6) gives (for the LC timex+ ≡ t) the Heisenberg operatorc(t) (and
correspondinglȳc(t)) as

c(t) = Gt + F, c̄(t) = G†t + F† (4.19)

which at LC timet = 0 imply

c ≡ c(0)= F, c̄ ≡ c̄(0)= F† (4.20a)

∂+c ≡ ∂+c(0)= G, ∂+c̄ ≡ ∂+c̄(0)= G† (4.20b)

By imposing the conditions

c2 = c̄2 = {c̄, c} = {∂+c̄, ∂+c} = 0 (4.21a)

{∂+c̄, c} = i = −{∂+c, c̄} (4.21b)

we then obtain

F2 = F†2 = {F†, F} = {G†, G} = 0 (4.22a)

{G†, F} = i , {G, F†} = −i (4.22b)

We now let|0〉 denote the fermionic vacuum for which

G|0〉 = F |0〉 = 0 (4.23)
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Defining|0〉 to have norm one, (4.22b) implies

〈0|FG†|0〉 = i , 〈0|GF†|0〉 = −i (4.24)

So that

G†|0〉 = 0, F†|0〉 = 0 (4.25)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
H BRST is however irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

H BRST=
[

pλu+ πv − (∂+φ)(∂+φ)− 2λ(∂−φ)(∂−φ)

+ 1

4
(pλ)

2+ G†G

]
(4.26)

and the BRST charge operatorQ is

Q =
∫

dx− [i F [
√

2∂−φ] − iG(pλ + π − ∂−φ)] (4.27)

Now becauseQ|ψ〉 = 0, the set of states annihilated byQ contains not only the
set of states for which (4.18) hold but also additional states for which

B|ψ〉 = D|ψ〉 = 0 (4.28a)

pλ|ψ〉 6= 0 (4.28b)

[π − ∂−φ]|ψ〉 6= 0 (4.28c)

[
√

2− ∂−φ]|ψ〉 6= 0 (4.28d)

The Hamiltonian is also invariant under the anti-BRST transformation given by

δ̂φ = −
√

2c̄(∂−φ), δ̂pλ = 0, δ̂5u = 0, δ̂5v = 0 (4.29a)

δ̂λ = [+(∂+c̄)− 2c̄(∂−λ)+ λ(∂−c̄)]/
√

2 (4.29b)

δ̂π =
√

2[−c̄(∂−∂−φ)− (∂−c̄)(∂−φ)] (4.29c)

δ̂u = [+(∂+∂+c̄)− 2c̄(∂+∂−λ)− 2(∂+c̄)(∂−λ)+ λ(∂+∂−c̄)

+ (∂+λ)(∂−c̄)]/
√

2 (4.29d)

δ̂v =
√

2[−c̄(∂+∂−φ)− (∂+c̄)(∂−φ)] (4.29e)

δ̂c̄ = 0, δ̂c = −b, δ̂b = 0 (4.29f)
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with the generator or anti-BRST charge

Q̄ =
∫

dx− [−i c̄[
√

2∂−φ] + i (∂+c̄)(pλ + π − ∂−φ) (4.30a)

=
∫

dx− [−i F †[
√

2∂−φ] + iG†(pλ + π − ∂−φ)] (4.30b)

We also have

∂+Q = [Q, HBRST] = 0 (4.31a)

∂+ Q̄ = [ Q̄, HBRST] = 0 (4.31b)

with

HBRST=
∫

dx H BRST (4.31c)

and we further impose the dual condition that bothQ and Q̄ annihilate physical
states, implying that

Q|ψ〉 = 0 and Q̄|ψ〉 = 0 (4.32)

The states for which (4.18) hold, satisfy both of these conditions and, in fact, are
the only states satisfying both of these conditions, since, although with (4.22)

G†G = −GG† (4.33)

there are no states of this operator withG†|0〉 = 0 andF†|0〉 = 0 [cf. (4.25)], and
hence no free eigenstates of the fermionic part ofHBRST that are annihilated by
each ofG, G†, F , F†. Thus the only states satisfying (4.32) are those satisfying
the constraints of the throry.

Further, the states for which (4.18) hold satisfy both the conditions (4.32) and
infact, are the only states satisfying both of these conditions because in view of
(4.21) one cannot have simultaneouslyc, ∂+c and c̄, ∂+c̄, applied to|ψ〉 to give
zero. Thus the only states satisfying (4.32) are those that satisfy the constraints of
the theory and they belong to the set of BRST-invariant and anti-BRST-invariant
states.

Alternatively, one can understand the above point in terms of fermionic an-
nihilation and creation operators as follows. The conditionQ|ψ〉 = 0 implies that
the set of states annihilated byQ contains not only the states for which (4.18) hold
but also additional states for which (4.28) hold. However,Q̄|ψ〉 = 0 guarantees
that the set of states annihilated bȳQ contains only the states for which (4.18) hold,
simply becauseG†|ψ〉 6= 0 andF†|ψ〉 6= 0. Thus in this alternative way also we
see that the states satisfyingQ|ψ〉Q̄|ψ〉 = 0 (i.e., satisfying (4.32)) are only those
states that satisfy the constraints of the theory and also that these states belong to
the set of BRST invariant and anti-BRST-invariant states.
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5. SUMMARY AND DISCUSSIONS

In this work we have studied the Siegel action describing the chiral bosons
on the LF, i.e., on the hyperplanesx+ = (x0+ x1)/

√
2 constant. The theory in the

IF has been studied before (Kulshreshthaet al., 1993a, 1999).

REFERENCES

Becchi, C., Rouet, A., and Stora, R. (1974).Physical Letters B52, 344.
Belluchi, S., Goltermann, M. F. L., and Petcher, D. N. (1989).Nuclear Physics B326, 307.
Bernstein, M. and Sonnenschein, J. (1988).Physical Review Letters60, 1772.
Brodsky, S. J., Pauli, H. C. and Pinsky, S. S. (1998).Physics Reports Physics Letters (Part C)301, 299.
Dirac, P. A. M. (1949).Reviews of Modern Physics21, 392.
Dirac, P. A. M. (1950).Canadian Journal of Mathematics2, 129.
Dirac, P. A. M. (1964).Lectures on Quantum Mechanics, Yeshiva University Press, New York.
Floreanini, R. and Jackiw, R. (1987).Physical Review Letters59, 1873.
Gitman, D. M. and Tyutin, I. V. (1990).Quantization of Fields with Constraints, Springer, New York.
Gross, D. J., Harvey, J. A., Martinec, E., and Rohm, R. (1985).Physical Review Letters54, 502.
Henneaux, M. and Teitelboim, C.In Proceedings of 2nd Meeting on Quantum Mechanics of Funda-

mental Systems 2, Plenum Press, New York (1989), Chap. 8, pp. 79–112.
Henneaux, M. and Teitelboim, C. (1992).Quantization of Gauge Systems, Princeton University Press,

Princeton.
Imbimbo, C. and Schwimmer, A. (1987).Physics Letters B193, 455.
Labastida, J. and Pernici, M. (1987).Physical Review Letters59, 2511.
Labastida, J. and Pernici, M. (1988).Nuclear Physics B297, 577.
Kulshreshtha, U. (1998).Helvetica Physics Acta71, 353–378.
Kulshreshtha, U. (2001).International Journal of Theoritical Physics40, 1561–1580.
Kulshershtha, D. S. and Mueller-Kirsten, H. J. W. (1992).Physical Review D: Particles and Fields45,

R393.
Kulshreshtha, U. and Kulshreshtha, D. S. (1998)International Journal of Theoritical Physics37,

2603–2619.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1993).Physical Review D:

Particles and Fields47, 4634.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1993).Zeitschrift f̈ur Physik C

60, 427–431.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1993).Helvetica Physics Acta

66, 737–751.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1993).Helvetica Physics Acta

66, 752–794.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1994).Zeitschrift f̈ur Physik C

64, 169–176.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1994).Canadian Journal of

Physics72, 639–646.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1995).Canadian Journal of

Physics73, 386–392.
Kulshreshtha, U., Kulshreshtha, D. S., and Mueller-Kirsten, H. J. W. (1999).International Journal of

Theoritical Physics38, 1399–1406.
Marcus, N. and Schwarz, J. (1982).Physics Letters B115, 111.
McCabe, J. (1989).Physical Letters B228, 478.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp679-ijtp-455418 November 19, 2002 13:46 Style file version May 30th, 2002

2410 Kulshreshtha and Kulshreshtha

McCabe, J. (1990).Physical Letters B242, 198.
McCabe, J. and Mehamid, M. M. M. K. (1990).Physical Letters B242, 191.
Mezinescu, L. and Nepomechie, R. I. (1988).Physical Review D: Particles and Fields37, 3067.
Nemeschansky, D., Preitschopf, C., and Weinstein, M. (1988).Annals of Physics(New York)183, 226.
Siegel, W. (1984).Nuclear Physics B238, 307.
Srivastava, P. P. (1989).Physical Review Letters63, 2791.
Sonnenschein, J. (1988).Nuclear Physics B309, 752.
Stone, M. (1989).Physical Review Letters63, 731.
Stone, M. (1990).Physical Review B: Condenced matter41, 212.
Stone, M. (1991). Annal of Physics (New York)207, 38.
Wen, X. G. (1990).Physical Review Letters64, 2206.
Wen, X. G. (1990).Physics Review B41, 12838.
Tyutin, V. (1975). Lebedev Report No. FIAN-39 (unpublished).


